Lesson 4-1: Polynomial Functions L.O: I CAN determine roots of polynomial equations. I CAN apply the Fundamental Theorem of Algebra. Date: ______

Polynomial in one variable – An expression of the form $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ where the coefficients $a_{0,a_{1,\dots,n}} a_n$ represent complex numbers, a_n is not zero, and n represents a nonnegative integer.

Degree of a polynomial in one variable— The greatest exponent of the variable of the polynomial.

Leading Coefficient – The coefficient of the term with the highest degree.

Polynomial Function – A function y = P(x) where P(x) is a polynomial in one variable.

Zero- A value of x for which f(x)=0.

Polynomial Equation – A polynomial that is set equal to zero.

Root – A solution of the equation P(x)=0.

Imaginary Number – A complex number of the form a + bi where $b \neq 0$ and *i* is the imaginary unit. Note: $i^2 = -1, \sqrt{-1} = i$

Complex Number – Any number that can be written in the form a + bi, where a and b are real numbers and *i* is the imaginary unit.

Pure imaginary Number – The complex number a + bi when a = 0 and $b \neq 0$.

Fundamental Theorem of Algebra – Every polynomial equation with degree greater than zero has at least one root in the set of complex numbers.

Corollary to the Fundamental Theorem of Algebra – Every polynomial P(x) of degree n (n>0) can be written as the product of a constant k ($k \neq 0$) and n linear factors. $P(x) = k(x - r_1)(x - r_2)(x - r_3) \dots (x - r_n)$ thus, a polynomial equation of degree n has exactly n complex roots, namely $r_1, r_2, r_3, \dots, r_n$.

******NOTE*******The general shapes of the graphs of polynomial functions with positive leading coefficients and degree greater than 0 are shown below. These graphs also show the *maximum* number of times the graph of each type of polynomial may cross the x-axis.

Polynomial functions with positive lead coefficients and maximum number of real roots.

Graphs of Polynomial Functions							
Linear function Degree 1	Quadratic function Degree 2	Cubic function Degree 3	Quartic function Degree 4	Quintic function Degree 5			
\rightarrow	${\longrightarrow}$	\longrightarrow	\longrightarrow	· At			

Third and fourth degree functions with real and imaginary roots.

******NOTE***** Since the x-axis only represents real numbers, imaginary roots cannot be determined by using a graph. The graphs below have the general shape of a thirddegree function and a fourth-degree function. In these graphs, the third-degree function only crosses the x-axis once, and the fourth degree function crosses the x-axis twice or not all.

Graphs of Polynomial Functions: End Behavior & Turning Points

	Odd degree		Even degree			
Sign of Leading Coefficient	Positive	Negative	Positive	Negative		
End behavior	4	* >	く ノ	\checkmark		
Number of turning points	n - 1 at most; each turning point is a local (or global) max. or min.					

Factor(s)	Root	Multiplicity	Behavior	Example Graph
(x+3)	-3	Odd: 1	Pass Through	y=x+3
$(x-1)^{3}$	1	Odd : 3, 5, (the higher the odd degree, the flatter the "squiggle")	"Squiggle" Pass Through	y = (x - 1) ³
x ²	0	Even: 2	Bounce or Touch	$y = x^2$
$(x+2)^4$	-2	Even : 4, 6, (the higher the even degree, the flatter the bounce)	"Flatter" Bounce	y = (x + 2) ⁴

****NOTE****The graph of a polynomial function with odd degree must cross the x-axis at least once. The graph of a function with even degree may or may not cross the xaxis. If it does, it will cross an even number of times. Each x-intercept represents a real root of the corresponding polynomial equation.

****NOTE*** If you know the roots of a polynomial equation, you can use the corollary to the Fundamental Theorem of Algebra to find the polynomial equation. That is , if a and b are roots of the equation, the equation must be (x-a)(x-b) = 0.

EX. 1 – END BEHAVIOR

1a. State the degree and leading coefficient of the polynomial. Then state the end behavior.

 $f(x) = x^3 - 6x^2 + 10x - 8.$

b. Determine whether 4 is a zero of f(x).

2a. State the degree and leading coefficient of the polynomial $f(x) = 3x^4 - x^3 + x^2 + x - 1$.

b. Determine whether -2 is a zero of f(x).

3a. State the degree and the leading coefficient of the polynomial $f(x) = 5m^2 + 8m^5 - 2$

b. Determine whether 5 is a zero of f(x).

Short Summary #1:

EX.2 – WRITING POLYNOMIAL EQUATIONS OF LEAST DEGREE WITH GIVEN ROOTS.

a. Write a polynomial equation of least degree with roots 2, 4i, and -4i.

• Does the equation have an odd or even degree? How many times does the graph of the related function cross the x-axis?

b. Write a polynomial equation of least degree with roots 2, 3i, and -3i.

• Does the equation have an odd or even degree? How many times does the graph of the related function cross the x-axis?

c. Write a polynomial equation of least degree with roots -3, 2i, and -2i.

b. Does the equation have an odd or even degree? How many times does the graph of the related function cross the x-axis?

Short Summary #2:

EX.3 – FINDING THE ROOTS OF A POLYNOMIAL EQUATION

a.) State the number of complex roots of the equation $9x^4 - 35x^2 - 4 = 0$. Then find the roots and graph the related function.

b.) State the number of complex roots of the equation $32x^3 - 32x^2 + 4x - 4 = 0$. Then find the roots and graph the related function.

c. State the number of complex roots of the equation $t^3 + 2t^2 - 4t - 8 = 0$. Then find the roots and graph the related function.

