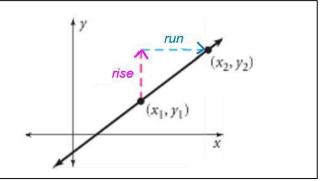
Lesson 2-2 (Day 1) Linear Equations

Learning Objective: I can graph linear functions using the following methods:

- a table of values
- x- and y-intercepts
- a slope and y-intercept
- and a point and a slope.

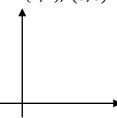
I can find the x-&-y-intercepts of a line.

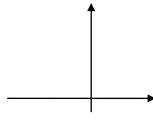

I can find the slope of a line through two points.

EQ: How many methods are there for graphing a Linear Equation? How do I graph using each method?

The Slope of a line passing through two points (x_1, y_1) , (x_2, y_2)

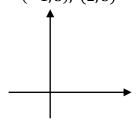
$$slope = \frac{rise}{run} = \frac{change\ in\ y}{change\ in\ x} = \frac{y_2 - y_1}{x_2 - x_1}$$


Note: slope is also called a rate of change and we tend to use the variable *m* to represent *slope*

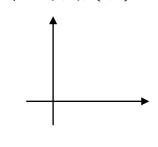

Ex.1. Finding Slope

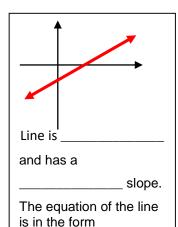
Plot the points, then find the slope of the line that passes through the points

a)

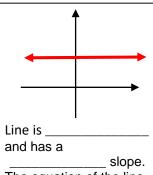


$$(-3,5), (2,1)$$




$$m = \overline{}$$

(-1,3), (2,3)


d) (2,3), (2,5)

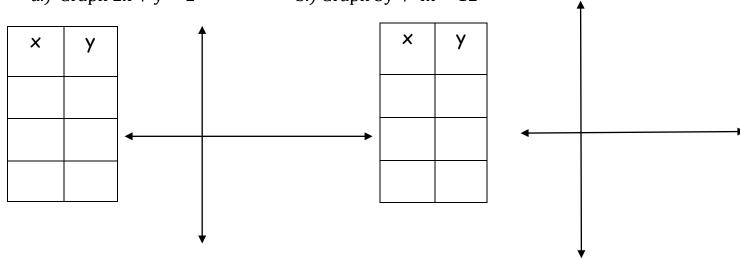
Line is and has a

The equation of the line is in the form

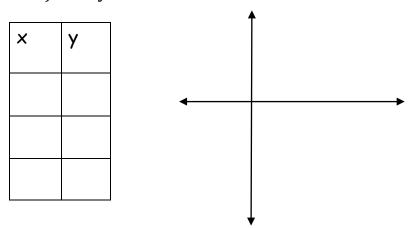
The equation of the line is in the form

Line is and has a slope. The equation of the line is

in the form


Methods for Graphing Linear Equations/Functions:

- Using a table of x and y values
- Using the x-and y-intercepts of a line. (x,0) & (0,y)
- Using the slope and y-intercept of a line. (y=mx + b)


Ex. 2: Graphing Linear Equations

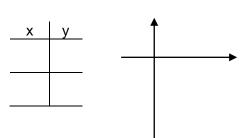
Graphing a Linear Equation using a table of values.

- a.) Graph 2x + y = 2
- b.) Graph 3y + 4x = 12

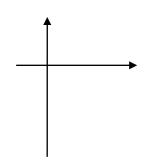
c.)
$$3x - y - 2 = 0$$

Short Summary #2:

Graph using x- and y- intercepts


a.) 6x - y - 2 = 0

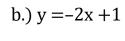
b.) 3y + 4x = 12

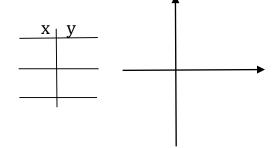

Steps:

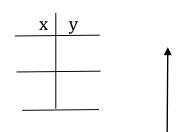
- 1.Find the x-&-y intercepts of the equation.
- 2. Graph both intercepts.
- 3. Connect points to form a line.

- c) 2x + 3y = 12
- <u>x y</u> ______
- d) 3x 4y = 9

e) -4x + 2y = -8

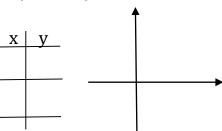



Short Summary #3:


Ex. 4: Graphing Using Slope-Intercept Form

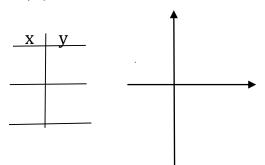
Use the Slope Intercept Form to graph the Linear Equation

a.)
$$y = \frac{3}{4}x - 2$$



Steps:

- 1. Graph the y intercept on the y-axis.
- 2. To plot the second point, count the the rise over run starting from the y-intercept you graphed in step 1.
- 3. Connect the points to form a line.


c.)
$$6x + 4y = -18$$

d.)
$$y = 5x + 3$$

<i>5</i> % <i>5</i>	Î
	-

e)
$$y = 3x - 2$$

f.)
$$3x - 2y = -4$$

I.) 3X – 25	7 = −4	
<u>x y</u>		

Short Summary #4:

Ex. 5: Graphing Linear Equations When x or y is the only variable given. Graph the equation.

a.)
$$f(x) = -3$$

b.)
$$x = 4$$

c.)
$$y = 2$$

d.)
$$x = -1$$

e.)
$$f(x) = 5$$

Short Summary #5: